Modern Strategies to Treat IBS

Johanna Iturrino Moreda, M.D. Assistant Professor of Medicine Harvard Medical School Beth Israel Deaconess Medical Center Boston, MA DDC 2/2024

No Disclosures

Objectives

- IBS definition- ROME IV
- Update on treatments available for IBS
 - IBS-C
 - IBS-D
 - Personalize treatment for IBS

IBS Definition

Rome IV Criteria for IBS

*Criteria fulfilled for the last 3 months with symptom onset at least 6 months prior to diagnosis

Lacy B et al. Gastroenterology. 2016;150:1393-1407 Sperber AD, et al. Gastroenterology 2021. 2021 Jan;160(1):99-114 . Sperber AD, et al. Gastroenterology 2021. 2021 Jan;160(1):99-114

IBS 4.1% (3.9-4.2)

BS-C 1.3%

IBS-D 1.2%

AGA Guidelines Target Approach to IBS

Augmented Practitioner Physician Relationship Can Improve Outcomes in IBS

- Augmented (enhanced)
 Practitioner-Patient
 Relationship received:
 - ✓ Warm, empathetic, and confident
 - ✓ Active listening
 - ✓ 20sec of thoughtful silence
 - ✓ Physical contact
 - ✓ Increased time(30 min over 3 weeks)

Test of trend: P<0.001; 95% CI 0.18 to 0.90 for limited v waiting list; 0.32 to 1.11 for augmented v limited

Test of trend: P(0.001; 95% CI -7.9 to 31.2 for limited v waiting list; 16.2 to 63.2 for augmented v limited

Test of trend: Pc0.001; 95% CI 2.7 to 30.7 for limited v waiting list; 3.2 to 32.3 for augmented v limited

Test of trend: P<0.001; 95% CI -2.1 to 3.2 for limited v waiting list; 1.7 to 8.8 for augmented v limited

Increase Physical Activity Improves GI Symptoms in IBS

12 weeks of moderatevigorous activity

Beth Israel Deaconess

Medical Center

• 3-5 times/week vs. usual care

Soluble Fiber (Psyllium) May be Effective in Some IBS Patients

Proportion of patients with adequate relief of symptoms each week¹

- Fiber can exacerbate bloating, flatulence, distention, and discomfort.
- Dose should be titrated gradually

Bijkerk CJ, et al. BMJ. 2009:339:B3154-B3160. ACG Task Force on IBS. Am J Gastroenterol. 2009;104(suppl 1):S1-S35. Eswaran S, et al. Am J Gastroenterol. 2013;108:718-727.

Probiotics: Recommendations Regarding Individual Combination, Species, or Strains cannot be made

- Meta-analysis NNT of 7 (95 % CI 4 12.5)
 - Might improve, abdominal pain, bloating, and flatulence scores
 - Bifidobacteria are more likely to improve gastrointestinal symptoms than lactobacilli.
 - Sub-analysis showed only combination probiotics, *Lactobacillus plantarum DSM 9843* and *E. coli DSM17252*, to be effective
- RCT : Probiotic **Bifidobacterium longum NCC3001** reduced depression but not anxiety scores
- Lab4 probiotic (Lactobacillus and Bifidobacterium)
 - IBSS score, anxiety and depression, "normalize stools"

Ford AC, et al. Am J Gastroenterol. 2014;109:1547-1561. Pinto-Sanchez MI et al. Gastroenterology.2017; 2017 Aug;153(2):448-459. BH Mullish, et al. Neurogastroenterolo Motili.2024.Jan 29:e14751.Online ahead of print

Food as a Trigger GI Symptoms

- Perceptions of food intolerance in IBS
 - 2X vs. general population
 - Symptoms with eating a meal
 - 28% within 15 min
 - 93% within 3 hrs
- Multiple testing for dietary allergies
 - Skin prick tests: No correlation results and symptoms
 - Food-specific immunoglobulins: IgE
 - Non-validated tests: delay hypersensitivity IgG
- Dietary therapies
 - Gluten-free diet found to be beneficial in some patients with IBS-D particularly those who are HLA DQ2/8 +
 - Lactose intolerance, Fat/Bile malabsorption, other breath tests

Mullin GE *et al.* Nutr Clin Pract 2010 ; 25 : 192 – 8 . Gibson PR, Shepherd SJ. Am J Gastoenterol. 2012 ay;107(5):657-66. Vazquez-Roque MI et al. Gastroenterology. 2013;144:903-911.

Hypothesis

 A breakdown of oral tolerance to food antigens caused by a bacterial infection underlies food-induced visceral hypersensitivity

Aguilera-Lizarraga J et al; Nature | Vol 590 | 4 February 2021

Role of Local Reactions to Foods Rectal Submucosal Injections

Only 2 reactions in the control group (gluten and soy)

All participants had negative skinprick test, total IgE, tryptase, antigen-specific IgE in serum

OHV OIBS

A teaching hospital of Harvard Medical School

Aguilera-Lizarraga J et al; Nature | Vol 590 | 4 February 2021

A 4 Wks RCT Comparing the Low FODMAP Diet vs. Modified NICE* Guidelines in US Adults with IBS-D

Example from the NICE guideline for IBS:

Reduce resistant starches

- whole grains, sweetcorn, and muesli that contains bran
- undercooked or reheated potato or maize/corn
- oven chips, crisps, potato waffles, fried rice
- part-baked and reheated breads, such as garlic bread, pizza base
- processed food such as potato or pasta salad, or manufactured biscuits and cakes
- ready meals containing pasta or potato, such as lasagne, shepherd's pie, macaroni cheese

• dried pasta

Eswaran et al. Am J Gastroenterol 2016; 111:1824–1832

Current Diets Have Shown Modest Effects in IBS

Low-FODMAP

- ACG and AGA recommends: limited trial of a low FODMAP diet to improve global symptoms
 - Conditional recommendation; very low quality of evidence
- Only the initial diet phase evaluated other phases
 - gradual reintroduction and personalization of the diet have not been adequately studied
- Pitfalls
 - Complex, Costly, Most effective GI dietician, possible negative impact on QOL
- Unanswered questions
 - Effects on the gut microbiota, development of ARFID, cibophobia, nutritional deficiencies

Investigate Eating Disorders before Recommending Dietary Interventions

Chey W.D. et al. Gastroenterology 2022;162:1737-1745

First Line IBS-C :Polyethylene Glycol (PEG) Improves Bowel Movements but Does not Improve Abdominal Discomfort/Pain in IBS-C

Between 1 - 3 sachets of PEG 3350 + E (13.8 g per day) or matching placebo were administered

Patients adjusted the dose based on stool consistency

```
Beth Israel Deaconess
Medical Center
```

Chapman RW, et al. Am J Gastroenterol. 2013;108(9):1508-1515.

E=electrolytes

Second line Secretagogues FDA approved for IBS-C

Tack J, Gastroenterology 2018;155:1677–1691

Lubiprostone (Cl Channel Activator/Amitiza) 8ug BID improves Symptoms of IBS-C

- Two 12-wk Phase III Trials
- Overall responder
 - monthly responder ≥ 2 out of the 3 months
- Monthly responder
 - At least moderate relief 2/4 wk or significant relief >2/4 wk
- Abdominal discomfort / pain, bloating, straining and severity of constipation, increased BM frequency and stool consistency.
- Most common AEs: Nausea (4% vs 8%)

A teaching hospital of Harvard Medical School

Drossman DA et al. Aliment Pharmacol Ther. 2009;29:329-341.

Linaclotide (Guanylate Cyclase C Agonist/Linzess) 290 µg QD Improved Abdominal and Bowel Symptoms Associated with IBS-C over 26 weeks of Treatment

Chey WD, Lembo AJ et al. AM J Gastroenterol 2012 Nov;107(11):1702-

of Harvard

Medical School

Plecanatide (Guanylate Cyclase C Agonist/Trulance) 3mg QD Improved Symptoms of IBS –C for 12 wks

- 2 RTC's
- Primary end point:
 - Overall responders (≥30% reduction from baseline in worst abdominal pain plus an increase of ≥1 CSBM from baseline the same week for ≥6 of 12 treatment weeks)
- Secondary end points:
 - stool frequency/consistency, straining, abdominal symptoms
- Side effects: Diarrhea
 - 3.2% of the 3-mg group
 - 3.7% of the 6-mg group

Efficacy of Tenapanor in IBS-C in Two Phase III RTC's

Na/H exchange inhibitor

Chey WD, Lembo A et al.Am J Gastroenterol. 2020Feb;115(2):281-293. Chey WD, Lembo A et al. Am J Gastroenterol 2021 Jun 1;116(6):1294-1303.

Efficacy of FDA Approved IBS-C treatments Systematic Review and Network Meta-analysis

FDA Endpoint Responder rates >30% improvement in abdominal pain + >1CSBM /wk

"Efficacy was similar among individual drugs and dosages for most end points."

Black CJ et al. CGH 2020 May ;18:1238–1239.

First Line IBS-D: Loperamide for IBS-Diarrhea

• Only antidiarrheal studied in IBS

• Three RCTs of low-intermediate quality

 ↓ Stool frequency and improved stool consistency but not abdominal pain or global IBS symptoms

Second Line IBS-D Role of Colesevelam in Bile Acid Diarrhea

- RCT phase 4
- IBS M, D and FD
- 7AC4>46
- N=22
- N=19 placebo
- 625mg 2 pills BID
- AE nausea, bloating and abdominal pain

P=0.008

RTC Phase III Trials (Target 1, 2 and 3) Rifaximin for IBS-D

- Limited systemic absorption (<0.4%)
- *In vitro* activity against G+ and G- aerobic and anaerobic bacteria
 - Though intestinal flora not significantly altered; MOA not clear
- 2 Phase III trials showed efficacy (i.e., adequate relief) in global IBS-D sx and IBS-bloating
 - $\sim 10\% \Delta$ over placebo
- Rifaximin 550 mg TID x 2 weeks vs placebo
- Target 3 retreatment : Urgency and bloating improved significantly with both repeat treatments

```
Beth Israel Deaconess
Medical Center
```


Pimintel M, Lembo A et al; TARGET Study Group. N Engl J Med. 2011;364:22-32.

Eluxadoline for IBS-D

- Mixed mu (μ) opioid receptor agonist / delta (δ) opioid receptor antagonist
- Low systemic absorption
- 25% response vs. 16% placebo response (phase 3)
- FDA approved 75 and 100 mg BID for IBS-D
- Sphincter of Oddi Dysfunction in 10/1666 (0.6%)
- Pancreatitis 5/1666 (0.3%)

Medical Center

- Death (2 pts- both had a hx of cholecystectomy)
- Contraindicated if alcohol intake is > 3 drinks per day

Third Line IBS-D: Alosetron, a 5-HT3 antagonist, **Improves Global Symptoms in Women with Severe IBS-D**

% GIS

Safety Profile of Alosetron

- Black-box warning
- Ischemic colitis
 - 2 per 1000 pts over 3 months
 - 3 per 1000 pts over 6 months
- **Constipation dose** dependant
 - Alosetron (1 mg bid) = 29%
 - Placebo = 6%

*P<0.02 vs placebo Assessment at 12 GIS = Global Improvement Scale

Prescribing Program: 0.5 mg BID, increase 1 mg BID if tolerated

Alosetron [package insert]. GlaxoSmithKline; 2006 Krause R et al. Am J Gastroenterol 2007; 102:1709

Ondansetron (5HT 3 antagonist) for IBS-D: Data From a Single Center Study

Effect of Ondansetron 4 to 8 mg TID for 5 Weeks in Patients With Rome III IBS-D (N = 120)**

No improvement in pain

Medical Center

Garsed K, et al Gut. 2014;63:1617-25.

Efficacy of FDA Approved IBS-D treatments Systematic Review and Network Meta-analysis

Favours experimental Favours placebo

"We found all drugs to be superior to placebo, but alosetron and ramosetron appeared to be the most effective."

Black CJ et al. Gut 2019 Apr 17. pii: gutjnl-2018-318160

First line Pain Antispasmodics in IBS : Limited Evidence

- Most are anticholinergics reduce bowel contraction
 - Side effects: dry mouth, constipation, urinary retention, blurred vision
 - Examples include: Dicyclomine, Hyoscyamine, Peppermint oil
- Limited evidence: low quality studies, single center, small n's
- Enteric coated peppermint oil (200 mg) appears to be more effective than placebo
 - Delayed release peppermint oil available in the US

Efficacy of Peppermint Oil Drugs IBS Systematic Review and Network Meta-analysis

- 10 RTCs (1030 patients)
- Improved

Global symptoms
 RR=0.65 (0.43-0.98) NNT=4

Abdominal pain
 RR=0.76 (0.62-0.93) NNT=7

- Higher risk for AE
 - RR = 1.57; 95% Cl 1.04-2.37
 - GERD, dyspepsia, flatulence

	Peppermint oil Placebo		bo	Risk Ratio			Risk Ratio					
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-H	Random, 95	% CI	
iu 1997	14	55	34	55	10.7%	0.41 [0.25, 0.68]	1997		-	-		
erat 2010	31	45	39	45	21.2%	0.79 [0.63, 1.00]	2010			-		
lam 2013	23	37	33	37	18.9%	0.70 (0.53, 0.92)	2013			-		
ash 2016	4	35	13	37	3.5%	0.33 [0.12, 0.90]	2016		-			
osaffa-Jahromi 2016	18	40	17	40	10.7%	1.06 [0.64, 1.74]	2016					
/eerts 2020	70	125	42	64	20.8%	0.85 [0.67, 1.08]	2020			-		
ee 2021	21	46	40	87	14.1%	0.99 [0.67, 1.47]	2021			+		
otal (95% CI)		383		365	100.0%	0.76 [0.62, 0.93]				٠		
otal events	181		218									
eterogeneity: Tau ² = 0.	04; Chi² = 13	3.58, df :	= 6 (P = 0	.03); l²	= 56%			0.01		_	10	4.0
est for overall effect: Z =	= 2.67 (P = 0	.008)						Fave	o.i ours peppern	nint oil Favo	urs placebo	10

Low quality of evidence

Amitriptyline at Low-Dose and Titrated for Irritable Bowel Syndrome as Second-Line Treatment [ATLANTIS]

	3 months			6 months				
	Low-dose amitriptyline (n=232)	Placebo (n=231)	Effect*, 95% CI	p value	Low-dose amitriptyline (n=232)	Placebo (n=231)	Effect*, 95% Cl	p value
Primary outcome								
IBS-SSS†								
Mean total IBS-SSS‡, SD	173∙0 (106∙6), n=219	194·6 (107·5), n=213	-23·3 (-42·0 to -4·6)	0.014	170·4 (107·7), n=204	200·1 (114·5), n=197	-27·0 (-46·9 to -7·1)	0.0079
Change in IBS-SSS from baseline, SD	-99.8 (107.7)	-76-1 (107-1)			-99-2 (112-9)	-68.9 (109.3)		**

Pregabalin for IBS Duloxetine RCT 55 PCP practices 18 ≥, Rome IV IBS n=463, 68%F, 32%M

IBS-SSS score ≥75 points

1:1 low-dose oral amitriptyline 10 mg QD up to 30 mg dose (titration over 3 weeks) vs placebo for 6 months

D/C AE- 13 % drug and 9 % placebo before 6 months

Beth Israel Deaconess Medical Center

Ford et al. Lancet . 2023 Oct 16:S0140-6736(23)01523-4..

Third Line : Systematic Review and Meta-analysis Psychological Therapy for IBS

Thorapy	Triale	N		NNT (95%
Cognitive behavioral therapy (CBT)	9	610	0.60 (0.44-0.83)	3 (2-6)
Relaxation training or therapy	6	255	0.77 (0.57-1.04)	_
Hypnotherapy	5	278	0.74 (0.63-0.87)	4 (3-8)
Multi-component psychological therapy	5	335	0.72 (0.62-0.83)	4 (3-7)
Self-administered, minimal-contact CBT	3	144	0.53 (0.17-1.66)	-
CBT via Internet	2	140	0.75 (0.48-1.17)	-
Dynamic psychotherapy	2	273	0.60 (0.39-0.93)	3.5 (2-25)
Stress management	2	98	0.63 (0.19-2.08)	_
Multi-component therapy via telephone	1	126	0.78 (0.64-0.93)	-
Mindfulness meditation training	1	75	0.57 (0.32-1.01)	_
Total	36	2334	0.68 (0.61-0.76)	

Ford AC, et al. Am J Gastroenterol. 2014 Sep;109:1350-1365.

Cl=confidence interval; NNT=number needed to treat; RR=risk ratio; – = not provided.

Comparison of Different Therapies for IBS

	Cognitive Behavioral therapy	Gut Directed Hypnotherapy	TCAs	Rifaximin	Linaclotide
Number Needed to Treat (NNT)	4	5	4.5	10	5-8

Ford et al; AJG 2019 Meenas et al;2012 Thomas et al; 2013

Available GI Psychotherapy Apps

Nerva: IBS & Gut Hypnotherapy III+ Manage IBS Gut-Brain Symptoms Mindset Health Pty Ltd

***** 48 + Tdr. Raings

Free - Offers In-App Purchased

Spiegel BMR, Liran O, Gale R et al. Am J Gastroenterol. 2022;117(3):495–500.

Therapeutic Choices Guided by History, Pathophysiology and Biomarkers

Adapted from Camilleri M, Boeckxstaens G. Gut 2022;0:1-10.

Take Home Points

- Importance to give the appropriate diagnosis IBS vs FC vs FD
- Importance of patient physician relation and lifestyle modifications
- Use biomarkers when available (7AC4, ARM, Transit studies, BT etc.)
- If diet interventions needed screen for Eating Disorders, ARFID
- Use first, second and third line and of treatment for IBS-C and IBS-D
- Use biomarkers when available (7AC4, ARM, Transit studies, BT etc.)
- Address IBS severity and refer to GI psychology, Apps
- Use antispasmodics, TCA, SNRI when necessary

We still have unmet needs...

Qualitative Validation of a Novel VR Program for

IBS: a VR1 study

Treatment Room Description

Room Name: Exam Room

Description: Patients virtually embody the role of a doctor to examine a patient and discover anistensical and physiological aspects of IBS, including motility, visceral hypersensitivity, bacterial overgrowth, and the brain-gut axis. Panel A: Patient becomes the doctor and applies a stethoscope to the abdomen, hearing bowel sounds. Panel B: Hologram of the digestive tract highlights the role of carbohydrates and bacterial fermentation and introduces bacterial overgrowth. Panel C: Description of the brain-gut axis and its role in IBS. Room Name: Chill Room

Description: Relaxing scenes feature gut-directed hypotherapy, mindful meditation, and breathing techniques to help patients learn to positively influence their brain-gut axis. Panel A: Gaze-based selection menu offers a range of guided experiences with male or female voice option. Panel B: As the patient inhales, an expanding mandala emits blue steam to fill and clearase the lungs. Panel C: As the patient breathes out, metaphorical red vapors are exhalled in exchange for the cleansing ail.

Room Name: Theater of the Mind

Description: Patients enter a "movie theater" representing their mind. Scenes on the screen depict thoughts as patients learn CBT techniques to replace negative thoughts about 85 with more supportive cognitions. Panel & Uter is in a public restroom stall, hears sounds of people outside, and is told people are waiting (other trigger scenes not shown). Panel B: The patient selects among a list of emotions that the bathroom scene triggers, followed by a series of CBT exercises to restructure maladaptive cognitions.

Room Name: Zoom Out Room

Description: Through a series of "poom out" maneuvers, patients gain perspective about the global community of people with IBS and, in the process, gain new perspectives about themselves as a person with IBS. Panel A: Standing atop a building, patients see others with IBS in their community, each marked by a green light. Panel B: Patients next "poom" into space, where they can see the worldwide community of IBS patients. Panel C: Patients learn from themselves in an avatar-based "self-chat" dialog.

Uncomplicated GI specific anxiety?

Spiegel BMR, Liran O, Gale R et al. Am J Gastroenterol. 2022;117(3):495–500.

